Run-Dependent MC Production for Summer 2004

S. D'Auria, A. Dominguez, J. Nielsen, P. Murat, F. Prakoshyn, R. Snihur, R. Tafirout, A. Warburton, D. Waters

- Goals
- Proposal
- Pros & Cons
- Implementation
- Status

Run-Dependent MC: Goals

- Produce Monte Carlo samples that look as much as possible like the data in terms of :
 - detector configuration (e.g. silicon coverage)
 - beam position
 - instantaneous luminosity (additional interactions)
- Have easily extensible Monte Carlo samples such that when more data are added to an analysis, the run range covered by the Monte Carlo can similarly be extended.
- Have a simple way of specifying and reproducing Monte Carlo datasets.
- Make life as simple as possible operationally!

Run-Dependent MC: Proposal

- Generate events corresponding to a **LARGE** (but user specifiable) list of runs. This ensures we map out the luminosity profile of the data properly and don't bias the samples by picking only long or "golden" runs.
- By default (but user specifiable) generate additional MINBIAS events according to the luminosity for each run.
- By default (but user specifiable) use SVX–GOOD runs, to maximise the usefulness of the MC statistics.
- Make appropriate changes to the way datasets are defined to make samples easily extensible (see following slide).

Example:

	run range	threshold	L(pb-1) L(included)	% inc	luded Nruns
	1. 141544-150144 2. 150145-152625 3. 152636-168892	40nb-1 50 100	15.8 15.9 173.4		93% 93% 93%	118 88 396
	4. 174996-175292 5. 177214-179056	30 80	1.7 43.3	1.6 40.4	93% 93%	18 112
			250.1	~230	93%	732
choose run ranges corresponding to significant		nt	_			V
changes in running conditions (especially run size)				must be roughly constant across run ranges to avoid biases	7	number of runs to generate – still small compared to numbers of events

Run-Dependent MC: Pros & Cons

Pros:

- Monte Carlo looks more like data
- Data/MC scale factors should be closer to unity.
- Stability tests (yields vs. time) can be performed simultaneously on data and Monte Carlo – very useful diagnostic.
- MC calculated efficiencies will have the effect of additional interactions (at least partially) accounted for.

Cons:

- Denominator in (Data/MC) is no longer fixed. Scale factors will be (more) MC sample dependent.
- Slightly more book-keeping required. For example if too many MC files are lost or ignored there is a risk of introducing gaps in MC run-coverage and biases may result.
- Some operational complications such as the need for concatenation of output.

Implementation: Dataset Definitions

In mcProduction/book/cdfpewk/:

```
ZEWKOZ: 5.3.2 ppbar->ZZ / Pythia / extra minbias events
  added 2 events per 1 nb^-1
                      zewkOz
DSID
BOOK
                      cdfpewk
                      pythia_zz_5.3.2
DSNAME
GENERATION MODE
MC PROCESS TCL
                      mc Pythia ZZ.tcl
FILTER TCL
                      mc postgenNoFilter.tcl
MINBIAS TCL
                      mc Pythia Minbias.tcl
NEV PER INV NB
NEV PER SECTION
                      5000
FIRST RUN
                      141544
                      168899
LAST RUN
RUN LIST
                      runlist summer2004
N SECTIONS
                      732
```

- These are the two key parameters
- Definition of dataset in terms of N/nb makes it much easier to extend datasets and makes more sense physics wise.

Implementation: Scripts

Scripts in mcProduction/scripts:

make_runlist.pl <start_run> <end_run> <lumi_threshold>

```
RUN :
                   INT LUMI :
                                       INST LUMI :
141572
                   72.34
                                      1.09e+31
141576
                   94.88
                                       7.62e+30
                                                          L = \frac{\text{integrated luminosity}}{}
                   159.80
                                      1.14e + 31
141597
                   97.84
                                      7.94e + 30
141598
141618
                   103.80
                                      1.25e+31
141619
                   82.54
                                      1.00e+31
                   65.54
141660
                                      1.01e+31
                                                         \langle N_{\text{MINBIAS}} \rangle = L \times \sigma_{\text{INELASTIC}} \times 396 \,\text{ns}
141928
                   48.30
                                      1.25e+31
141931
                   139.81
                                      1.01e+31
141984
                   89.64
                                      1.59e+31
```

. . . . etc.

make_joblist.pl <runlist_file> <N/nb> <N/section> [section num]

→ Used to calculate number of MC jobs required and by MCProd to define job properties

Status

- Initial implementation complete.
- Successful test run (dataset "tewk0e" with 1 event/nb; 732 jobs in total).
- Operational problems ironed out (but still some improvements needed to optimise efficiency)
- Have checked to make sure extra MINBIAS events going in as expected :

```
Time per W->enu event on 1.4GHz Athlon CPU :

Inst-L (cm-2 s-1) : 0 6.9E31

Sim-Time/Evt (sec) : 6.4 9.6
```

Ready to generate large datasets.